Abstract

In this article the task of determining the current position of pneumatic actuators is considered. The solution to the given task is achieved by using a technical vision system that allows to apply the fuzzy clustering method to determine in real time the center coordinates and the displacement position of a color label located on the mechatronic complex actuators. The objective of this work is to improve the accuracy of the moving actuator’s of mechatronic complex by improving the accuracy of the color label recognition. The intellectualization of process of the color shade recognition is based on fuzzy clustering. First, a fuzzy model is built, that allows depending on the input parameters of the color intensity for each of the RGB channels and the color tone component, to select a certain color in the image. After that, the color image is binarized and noise is suppressed. The authors used two defuzzification models during simulation a fuzzy system: one is based on the center of gravity method (CoG) and the other is based on the method of area ratio (MAR). The model is implemented based on the method of area ratio and allows to remove the dead zones that are present in the center of gravity model. The method of area ratio determines the location of the color label in the image frame. Subsequently, when the actuator is moved longitudinally, the vision system determines the location of the color label in the new frame. The color label position offset between the source and target images allows to determine the moved distance of the color label. In order to study how noise affects recognition accuracy, the following digital filters were used: median, Gaussian, matrix and binomial. Analysis of the accuracy of these filters showed that the best result was obtained when using a Gaussian filter. The estimation was based on the signal-to-noise coefficient. The mathematical models of fuzzy clustering of color label recognition were simulated in the Matlab/Simulink environment. Experimental studies of technical vision system performance with the proposed fuzzy clustering model were carried out on a pneumatic mechatronic complex that performs processing, moving and storing of details. During the experiments, a color label was placed on the cylinder, after which the cylinder moved along the guides in the longitudinal direction. During the movement, video recording and image recognition were performed. To determine the accuracy of color label recognition, the PSNR and RMSE coefficients were calculated which were equal 38.21 and 3.14, respectively. The accuracy of determining the displacement based on the developed model for recognizing color labels was equal 99.7%. The defuzzifier speed has increased to 590 ns.

Highlights

  • Распознавание оттенка цветовой метки на основе нечёткой кластеризации

  • The solution to the given task is achieved by using a technical vision system that allows to apply the fuzzy clustering method to determine in real time the center coordinates and the displacement position of a color label located on the mechatronic complex actuators

  • The intellectualization of process of the color shade recognition is based on fuzzy clustering

Read more

Summary

Introduction

Распознавание оттенка цветовой метки на основе нечёткой кластеризации. Решение поставленной задачи достигается введением системы технического зрения, позволяющей на основе метода нечеткой кластеризации определять в режиме реального времени координаты центра цветовой метки, установленной на исполнительных механизмах мехатронного комплекса и позицию её смещения. Целью работы является повышение точности распознавания цветовой метки для прецизионного позиционирования исполнительных механизмов мехатронного комплекса и повышение быстродействия дефаззификатора за счет распараллеливания вычислительных процедур в нем. Для определения точности распознавания цветовой метки рассчитаны коэффициенты PSNR и RMSE, которые составили 38,21 и 3,14 соответственно.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call