Abstract

The Ethereum blockchain permits the development and deployment of smart contracts which can store and execute code 'on-chain' - that is, entirely on nodes in the blockchain's network. Smart contracts have traditionally been used for financial purposes, but since smart contracts are Turing-complete, their algorithmic scope is broader than any single domain. To that end, we design, develop, and deploy a comprehensive 3D rendering engine programmed entirely in Ethereum smart contracts, called Shackled. Shackled computes a 2D image from a 3D scene, executing every single computation on-chain, on Ethereum. To our knowledge, Shackled is the first and only fully on-chain 3D rendering engine for Ethereum. In this work, we 1) provide three unique datasets for the purpose of using and benchmarking Shackled, 2) execute said benchmarks and provide results, 3) demonstrate a potential use case of Shackled in the domain of tokenised generative art, 4) provide a no-code user interface to Shackled, 5) enumerate the challenges associated with programming complex algorithms in Solidity smart contracts, and 6) outline potential directions for improving the Shackled platform. It is our hope that this work increases the Ethereum blockchain's native graphics processing capabilities, and that it enables increased use of smart contracts for more complex algorithms, thus increasing the overall richness of the Ethereum ecosystem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.