Abstract
Herein, we report the first characterization of Shab slow inactivation. Open Shab channels inactivate within seconds, with two voltage-independent time constants. Additionally, Shab presents significant closed-state inactivation. We found that with short depolarizing pulses, shorter than the slowest inactivation time constant, the resulting inactivation curve has a marked U-shape, but as pulse duration increases, approaching steady-state conditions, the U-shape vanishes, and the resulting inactivation curves converge to the classical Boltzmann h∞ curve. Regarding the mechanism of inactivation, we found that external K+ and TEA facilitate both open- and closed-state inactivation, while the cavity blocker quinidine hinders inactivation. These results together with our previous observations regarding the K+-dependent stability of the K+ conductance, suggest the novel hypothesis that inactivation of Shab channels, and possibly that of other Kv channels whose inactivation is facilitated by K+, does not involve a significant narrowing of the extracellular entry of the pore. Instead, we hypothesize that there is only a rearrangement of a more internal segment of the pore that affects the central cavity and halts K+ conduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.