Abstract
SUMMARY A boundary element method (BEM) combined with a linear slip boundary condition is proposed to calculate SH wave scattering from fractures in the frequency domain. The linear slip boundary condition was proposed by Schoenberg to model elastic wave propagation through an imperfectly bonded interface, where the traction cross the interface is continuous and displacement is discontinuous. Here, we demonstrate how to simulate SH wave scattering from fractures by applying the BEM and this linear slip boundary condition. We compare the displacement discontinuity across a traction-free crack calculated using the BEM and an analytical model to show the validity and accuracy of our approach. Comparisons between results obtained using our model with those obtained using a finite difference method are also performed and very good matches between these two methods are found. An example of SH wave scattering from three curved, crossing fractures is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.