Abstract
Single-guide RNA is a guide RNA (gRNA), which guides the insertion or deletion of uridine residues into kinetoplastid during RNA editing. It is a small non-coding RNA that can be combined with pre -mRNA pairing. SgRNA is a critical component of the CRISPR/Cas9 gene knockout system and play an important role in gene editing and gene regulation. It is important to accurately and quickly identify highly on-target activity sgRNAs. Due to its importance, several computational predictors have been proposed to predict sgRNAs on-target activity. All these methods have clearly contributed to the development of this very important field. However, they also have certain limitations. In the paper, we developed a new classifier SgRNA-RF, which extracts the features of nucleic acid composition and structure of on-target activity sgRNA sequence and identified by random forest algorithm. In addition to solving an imbalanced dataset, this paper proposed a new method called CS-Smote. We compared sgRNA-RF with state-of-the-art predictors on the five datasets, and found SgRNA-RF significantly improved the identification accuracy, with accuracies of 0.8636,0.9161,0.894,0.938,0.965,0.77,0.979,0.973, respectively. The user-friendly web server that implements sgRNA-RF is freely available at http://server.malab.cn/sgRNA-RF/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.