Abstract

Heart failure (HF) often coexists with insulin resistance (IR), and the incidence of HF in type 2 diabetes mellitus (T2DM) patients is significantly higher. The reciprocal relationship between HF and IR has long been recognized, and the integration complicates the therapy of both. A number of mechanisms ascribe to the progression of cardiac IR, in which the main factors are the shift of myocardial substrate metabolism. Studies have found that SGLT2 inhibitors, an anti-diabetic drug, can improve the cardiac prognosis of patients with T2DM, which may be at least partially due to the relief of cardiac IR. Basic and clinical studies have revealed the important role of cardiac IR in the pathogenesis and progression of HF, and studies suggest that energy metabolism plays an important role in the pathogenesis of cardiac IR and HF. SGLT2 inhibitors mediated cardiovascular benefits through various mechanisms such as improving substrate utilization and improving myocardial energy. The regulation of SGLT2 inhibitors on cardiac energy status including carbohydrates, fatty acids (FA), amino acids and ketones, ATP transfer to the cytoplasm, and mitochondrial functional status have received extensive attention in HF, but its specific mechanism of action is still unclear. Therefore, this article reviews the relationship between IR and HF from the perspective of energy metabolism; subsequently, targeting energy metabolism discusses the pivotal role of SGLT2 inhibitors in improving cardiac IR and HF based on basic and clinical research evidences, and sought to clarify the molecular mechanism involved. (Fig.1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call