Abstract
Background/Aims: Receptor-mediated endocytosis of albumin by the renal proximal tubule requires a number of proteins including megalin/cubilin, sodium/hydrogen exchanger isoform 3 (NHE3) and ClC-5, as well as the PSD-95/Dlg/Zo-1 (PDZ) scaffold sodium/hydrogen exchanger regulatory factor 2 (NHERF2). Despite members from the AGC kinase family, v-Akt Murine Thymoma Viral Oncogene (Akt or Protein Kinase B) and Serum/Glucocorticoid regulated Kinase 1 (Sgk-1) regulating a number of essential proteins in the albumin handling pathway, their role in uptake is largely unknown. Methods: Opossum kidney (OK) cells were exposed to Texas-Red albumin, in the presence of silencing constructs against Sgk-1, Akt and NHERF2, in addition to the NHE3 inhibitor 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) and NHE3 activator dexamethasone. Target protein was also measured by Western blot analysis in OK cells following exposure to dexamethasone and albumin. Results: Silencing Sgk-1 or overexpression of a dominant negative mutant (DN-Sgk-1) led to a significant reduction of albumin endocytosis compared to control. Conversely, over-expression of wildtype (WT) or constitutively active (CA) Sgk-1 significantly increased uptake. Previous reports have shown Sgk-1 can activate NHE3 through an interaction mediated by NHERF2. We found that silencing both Sgk-1 and NHERF2 demonstrated no additive effect on uptake, suggesting signaling via similar endpoints. Treatment with dexamethasone increased Sgk-1 protein levels and increased albumin endocytosis in OK cells. Interestingly, silencing Akt also lead to a reduction in albumin endocytosis, however in cells silenced for both Sgk-1 and Akt, the additive change in albumin uptake demonstrated that these proteins may act via separate pathways. Conclusions: We have characterized a Sgk-dependent pathway that regulates albumin uptake in the proximal tubule which also includes NHE3 and NHERF2. These data provide further insights into this essential tubular process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.