Abstract
SummaryThe ‘Subgroup Identification’ (SGI) toolbox provides an algorithm to automatically detect clinical subgroups of samples in large-scale omics datasets. It is based on hierarchical clustering trees in combination with a specifically designed association testing and visualization framework that can process an arbitrary number of clinical parameters and outcomes in a systematic fashion. A multi-block extension allows for the simultaneous use of multiple omics datasets on the same samples. In this article, we first describe the functionality of the toolbox and then demonstrate its capabilities through application examples on a type 2 diabetes metabolomics study as well as two copy number variation datasets from The Cancer Genome Atlas.Availability and implementationSGI is an open-source package implemented in R. Package source codes and hands-on tutorials are available at https://github.com/krumsieklab/sgi. The QMdiab metabolomics data is included in the package and can be downloaded from https://doi.org/10.6084/m9.figshare.5904022.Supplementary information Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.