Abstract

This paper considers the automatic design of fuzzy-rule-based classification systems from labeled data. The performance of classifiers and the interpretability of generated rules are of major importance in these systems. In past research, some genetic-based algorithms have been used for the rule learning process. These genetic fuzzy systems have utilized different approaches to encode rules. In this paper, we have proposed a novel steady- state genetic algorithm to extract a compact set of good fuzzy rules from numerical data (SGERD). The selection mechanism of this algorithm is nonrandom, and only the best individuals can survive. Our approach is very simple and fast, and can be applied to high-dimensional problems with numerical attributes. To select the rules having high generalization capabilities, our algorithm makes use of some rule- and data-dependent parameters. We have also proposed an enhancing function that modifies the rule evaluation measures in order to assess the candidate rules more effectively before their selection. Experiments on some well-known data sets are performed to show the performance of SGERD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.