Abstract

User and item embeddings are key resources for the development of recommender systems. Recent works has exploited connectivity between users and items in graphs to incorporate the preferences of local neighborhoods into embeddings. Information inferred from graph connections is very useful, especially when interaction between user and item is sparse. In this paper, we propose graphSAGE Collaborative Filtering (SGCF), an inductive graph-based recommendation system with local sampling weight. We conducted an experiment to investigate recommendation performance for SGCF by comparing its performance with baseline and several SGCF variants in Movielens dataset, which are commonly used as recommendation system benchmark data. Our experiment shows that weighted SGCF perform 0.5% higher than benchmark in NDCG@5 and NDCG@10, and 0.8% in NDCG@100. Weighted SGCF perform 0.79% higher than benchmark in recall@5, 0.4% increase for recall@10 and 1.85% increase for recall@100. All the improvements are statistically significant with p-value 0.05.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.