Abstract

Deep learning has been successful in many fields such as acoustics, image, and natural language processing. However, due to the unique characteristics of graphs, deep learning using universal graph data is not easy. The Graph Attention Networks (GATs) show the best performance in multiple authoritative node classification benchmark tests (including transductive and inductive). The purpose of this research is to design and implement an FPGA-based accelerator called S-GAT for graph attention networks that achieves excellent performance on acceleration and energy efficiency without losing accuracy, and does not rely on DSPs and large amounts of on-chip memory. We design S-GAT with software and hardware co-optimization. Specifically, we use model compression and feature quantization to reduce the model size, and use shift addition units (SAUs) to convert multiplication into shift operation to further reduce the computation requirements. We integrate the above optimizations into a universal hardware pipeline for various structures of GATs. At last, we evaluate our design on an Inspur F10A board with an Intel Arria 10 GX1150 and 16 GB DDR3 memory. Experimental results show that S-GAT can achieve 7.34 times speedup over Nvidia Tesla V100 and 593 times over Xeon CPU Gold 5115 while maintaining accuracy, and 48 times and 2400 times on energy efficiency respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.