Abstract

Fog computing is a promising solution to provide low-latency and ubiquitously available computation offloading services to widely distributed Internet of Things (IoT) devices with limited computing capabilities. One obstacle, however, is how to seamlessly hand over mobile IoT devices among different fog nodes to avoid service interruption. In this paper, we propose seamless fog (sFog), a new framework supporting efficient congestion control and seamless handover schemes. Intrinsically, sFog improves system performance during handovers (achieved by the handover scheme), and guarantees the performance does not degrade when handovers do not occur (achieved by the congestion control scheme). Through the congestion control scheme, jobs are efficiently offloaded without causing unnecessary system idling; through the handover scheme, jobs are pre-migrated to the target fog node when a handover is about to occur, in order to reduce migration delay. In order to evaluate the performance of sFog, we propose a theoretical framework and establish a real-world prototype. Both the theoretical and experimental results show that sFog achieves substantial delay reductions compared with traditional benchmark handover schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.