Abstract

We succeeded in identifying the intermediates in thermal decomposition reactions by utilizing the combination of an instantaneous temperature jump induced by the irradiation of picosecond laser pulses and the subsequent observation by time-resolved sum-frequency generation (TR-SFG) spectroscopy. The short-lived reactive intermediates in the decomposition of formate on NiO(111) and Ni(111) surfaces were identified. The irradiation of 1064 nm laser pulses caused the vibrational peak of the CD stretching mode ν CD of bidentate formate on NiO(111) to weaken and the ν CD band of monodentate formate to appear. The result on Ni(111) showed the weakening of the ν CD band of bridging formate and the appearance of the CO stretching mode ν CO of monodentate formate. The spectral changes recovered on a 100 ps time scale but not fully above 400 K for the NiO(111) system and 320 K for the Ni(111) system, indicating the onset of thermal decomposition in the high-temperature period. The observations suggested that the formate in the stable bidentate/bridging configurations transformed to unstable monodentate formate prior to decomposition. Temperature- and time-dependent features indicated that the two types of formate were in equilibrium and the equilibrium shifted towards the monodentate form by the rapid laser-induced temperature jump of about 250–300 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.