Abstract
BackgroundSF3B1 is a core component of splicing machinery. Mutations in SF3B1 are frequently found in myelodysplastic syndromes (MDS), particularly in patients with refractory anemia with ringed sideroblasts (RARS), characterized by isolated anemia. SF3B1 mutations have been implicated in the pathophysiology of RARS; however, the physiological function of SF3B1 in erythropoiesis remains unknown.MethodsshRNA-mediated approach was used to knockdown SF3B1 in human CD34+ cells. The effects of SF3B1 knockdown on human erythroid cell differentiation, cell cycle, and apoptosis were assessed by flow cytometry. RNA-seq, qRT-PCR, and western blot analyses were used to define the mechanisms of phenotypes following knockdown of SF3B1.ResultsWe document that SF3B1 knockdown in human CD34+ cells leads to increased apoptosis and cell cycle arrest of early-stage erythroid cells and generation of abnormally nucleated late-stage erythroblasts. RNA-seq analysis of SF3B1-knockdown erythroid progenitor CFU-E cells revealed altered splicing of an E3 ligase Makorin Ring Finger Protein 1 (MKRN1) and subsequent activation of p53 pathway. Importantly, ectopic expression of MKRN1 rescued SF3B1-knockdown-induced alterations. Decreased expression of genes involved in mitosis/cytokinesis pathway including polo-like kinase 1 (PLK1) was noted in SF3B1-knockdown polychromatic and orthochromatic erythroblasts comparing to control cells. Pharmacologic inhibition of PLK1 also led to generation of abnormally nucleated erythroblasts.ConclusionsThese findings enabled us to identify novel roles for SF3B1 in human erythropoiesis and provided new insights into its role in regulating normal erythropoiesis. Furthermore, these findings have implications for improved understanding of ineffective erythropoiesis in MDS patients with SF3B1 mutations.
Highlights
SF3B1 is a core component of splicing machinery
Expression of SF3B1 during human erythroid differentiation To explore the role of SF3B1 in human erythropoiesis, we first examined the expression of SF3B1 in highly purified erythroid cells at each distinct developmental stage derived from cord blood CD34+ cell cultures
Knockdown of SF3B1 severely impairs erythroid progenitor growth Erythropoiesis is a complex process that can be divided into early-stage erythropoiesis and terminal erythroid differentiation
Summary
SF3B1 is a core component of splicing machinery. Mutations in SF3B1 are frequently found in myelodysplastic syndromes (MDS), in patients with refractory anemia with ringed sideroblasts (RARS), characterized by isolated anemia. Results: We document that SF3B1 knockdown in human CD34+ cells leads to increased apoptosis and cell cycle arrest of early-stage erythroid cells and generation of abnormally nucleated late-stage erythroblasts. RNA-seq analysis of SF3B1-knockdown erythroid progenitor CFU-E cells revealed altered splicing of an E3 ligase Makorin Ring Finger Protein 1 (MKRN1) and subsequent activation of p53 pathway. Erythropoiesis is an integral component of hematopoiesis It is a process by which hematopoietic stem cells undergo multiple developmental stages to eventually generate erythrocytes. Disordered or ineffective erythropoiesis is a feature of a large number of human hematological disorders These include Cooley’s anemia [1], congenital dyserythropoietic anemia [2], Diamond-Blackfan anemia [3], malarial anemia [4], and various bone marrow failure syndromes including myelodysplastic syndromes (MDS) [5]. In addition to cytokines and transcription factors, recent studies are beginning to reveal the importance of other regulatory mechanisms such as miRNAs [13,14,15], histone modifiers [16], and DNA modifiers TET2 and TET3 [17] in regulating erythropoiesis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.