Abstract

Electrospinning-based wound dressings have multiple functions such as antibacterial, anti-inflammatory, and therapeutic, and are important in skin wound care. Herein, we designed a phlorizin (PHL)-loaded silk protein/polyvinylpyrrolidone (SF/PVP) composite nanofibrous membrane, which can be used as multiple wound dressings. In particular, SF/PVP/PHL scaffolds have high porosity and mechanical properties, exhibiting suitable permeability and hydrophilicity. The SF/PVP/PHL scaffolds containing PHL also have excellent antibacterial and antioxidant activities. Furthermore, the nanofiber significantly accelerated the wound healing process in a full-thickness skin injury model by enhancing wound re-epithelialization and collagen deposition density, increasing the content of macrophage antigen (CD68), platelet-endothelial cell adhesion molecule (CD31), proliferating cell nuclear antigen (PCNA) and inhibiting the expression of α-smooth muscle actin (α-SMA) at the wound site. The mechanism may be related to the inhibition of activation of phosphatidylinositol 3-kinase/serine-threonine kinase/ target of rapamycin (PI3K/AKT/mTOR) signaling pathway to enhance autophagy. Therefore, SF/PVP/PHL nanofibers can ideally meet the various requirements of the wound healing process and are promising wound dressing candidates for future clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call