Abstract

BackgroundFemales in a wide range of taxa have been shown to base their choice of mates on pheromone signals. However, little research has focussed specifically on the form and intensity of selection that mate choice imposes on the pheromone signal. Using multivariate selection analysis, we characterise directly the form and intensity of sexual selection acting on cuticular hydrocarbons, chemical compounds widely used in the selection of mates in insects. Using the Australian field cricket Teleogryllus oceanicus as a model organism, we use three measures of male attractiveness to estimate fitness; mating success, the duration of courtship required to elicit copulation, and subsequent spermatophore attachment duration.ResultsWe found that all three measures of male attractiveness generated sexual selection on male cuticular hydrocarbons, however there were differences in the form and intensity of selection among these three measures. Mating success was the only measure of attractiveness that imposed both univariate linear and quadratic selection on cuticular hydrocarbons. Although we found that all three attractiveness measures generated nonlinear selection, again only mating success was found to exert statistically significant stabilizing selection.ConclusionThis study shows that sexual selection plays an important role in the evolution of male cuticular hydrocarbon signals.

Highlights

  • Females in a wide range of taxa have been shown to base their choice of mates on pheromone signals

  • This study shows that sexual selection plays an important role in the evolution of male cuticular hydrocarbon signals

  • We found that all three measures of male attractiveness generated sexual selection on male cuticular hydrocarbons, there were differences in the form and intensity of selection among these three measures

Read more

Summary

Introduction

Females in a wide range of taxa have been shown to base their choice of mates on pheromone signals. Using the Australian field cricket Teleogryllus oceanicus as a model organism, we use three measures of male attractiveness to estimate fitness; mating success, the duration of courtship required to elicit copulation, and subsequent spermatophore attachment duration. It is common in natural populations for individuals of one sex, usually the female, to prefer certain phenotypic trait values over others in their choice of mates. Cuticular hydrocarbons are chemical compounds found on the cuticle of most terrestrial arthropods These compounds have been studied extensively for their role as signals in mate and species recognition, and ecology [7,8]. Cuticular hydrocarbons are highly sexually dimorphic in a range of species, with many of the compounds present in one sex but absent in the other, while shared compounds often differ quantitatively between the sexes [see (page number not for citation purposes)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.