Abstract

Adaptive mate choice in species lacking male resource control and/or paternal care might be maintained by selection because preferred males sire genetically superior offspring. For such a process to occur, some male phenotypic trait(s) must both reliably indicate male genetic quality and influence the pattern of mate choice by females. In American toads, Bufo americanus, male body length has been documented to influence female mating patterns: females usually mate with males that are larger than average. However, the relationship between male size and male genetic quality is unknown. We conducted a controlled breeding experiment using 48 sires and 19 dams to determine if larger males sire offspring with superior larval performance characteristics (greater survival to metamorphosis, larger mass at metamorphosis, and earlier metamorphosis). We also aged each sire to test the hypothesis that older males are, on average, genetically superior to younger males. We crossed each female with three sires representing three body size categories (mean and 1 SD ± mean snout-ischium length). Hatchlings (500 from each cross) were reared to metamorphosis in seminatural ponds in the field. Metamorph weight (log transformed) and age at metamorphosis showed significant heritability and were genetically correlated with each other. Hence, sires differed in genetic quality. However, none of the three measures of offspring performance was correlated with sire body size or age. Thus, we obtained no support for the prediction that sire body size or age is related to genetic quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call