Abstract
Simultaneous hermaphroditism is an infrequent mode of reproduction among bivalves of the family Unionidae: only five of the 220 North American species are simultaneous hermaphrodites. However, hermaphroditic individuals of otherwise predominantly dioecious species have been encountered in 30 of I01 species examined. These hermaphroditic individuals as well as simultaneous hermaphrodites can exhibit considerable variability in the ratio of spermatogenic: oogenic tissue within the gonad, and the purposes of this paper are to determine the underlying causes of both this variability and the occurrence of occasional hermaphroditic individuals among dioecious species. Results indicate that the ratio of male: female gonodal tissue of a simultaneous hermaphrodite is bimodally distributed, and several hypotheses to account for this observation are presented. It is proposed that populations occurring in different habitats and under conditions of different individual density are subject to fundamentally different sexual selection pressures acting on ratios of allocation to male and female gametes. Occasional hermaphroditism among otherwise predominantly dioecious species was in this study associated with infection of the gonads by digenean trematodes. A model of sexual determination among unionids presented in this paper proposes that sex is determined by genetically controlled hormone levels: occasional hermaphrodites result from alterations in these hormone levels caused by developmental errors and trematodal infections which mimic the results of such errors. Predictions of this model are consistent with observed levels of variability in male: females gonadal tissue among occasional hermaphrodites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.