Abstract

Knowledge of the virulence of a pathogen population and recognition of the risks of changes in the virulence spectrum are essential in breeding crops for disease resistance. Sexual recombination in a pathogen increases the level of genotypic diversity and can influence the virulence spectrum. This study aimed to determine how sexual recombination can change virulence of the barley pathogen Pyrenophora teres and whether the barley cultivation system, no-tillage or normal tillage, influences P. teres virulence. The inheritance of avirulence/virulence in P. teres following sexual reproduction was studied in three artificially created pathogen populations. The first was a product of crossing two net forms of the pathogen, and the second and the third were products of crossing net and spot forms. None of the progeny generated resembled the parents exactly. The average similarity of the progeny isolates of the net by net cross with the parental type, based on avirulence/virulence tests, was 92%. That for net and spot form progenies was 58% in comparison with the net form parents and 73% with the spot form parents. The virulence reactions of the progeny isolates did not correlate with morphological traits of the isolates: growth rate on agar, spore production, spore width, spore length and numbers of septa per conidium. To study the effect of the barley cultivation method on P. teres virulence, 313 single-spore cultures were obtained from barley fields. Two hundred and seventy-six of the isolates represented the spot form and 37 represented the net form of P. teres. No association was established between the tillage method and virulence for either the net form or the spot form isolates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call