Abstract
Epidemiological data suggest that hyperglycemia abrogates the gender-based cardiovascular protection possibly associated with estrogens. This study was designed to investigate 1) whether rabbit aortic rings show gender differences in the development of abnormal endothelium-dependent vasodilation (EDV) under acute hyperglycemic conditions, 2) the potential role of PKC isoforms and superoxide (O2-) in acute hyperglycemia-induced vascular dysfunction, and 3) the effect of acute estrogen administration on hyperglycemia-induced endothelial dysfunction in male and female rabbits. EDV to ACh was determined before and after 3 h of treatment with high glucose (HG) in phenylephrine-precontracted aortic rings from male and female New Zealand White rabbits. Similar experiments were conducted in the presence of inhibitors of PKC-alpha, PKC-beta, and PKC-delta or an O2- scavenger. The effect of acute estrogen administration was evaluated in the presence and absence of HG. Finally, mRNA expression of PKC isoforms was measured by real-time PCR. We found that 1) 3 h of incubation with HG impairs EDV to a greater extent in female than male aorta, 2) inhibition of PKC-beta or O2- prevents HG-induced impairment of EDV in female aorta, 3) acute 17beta-estradiol aggravates HG-induced endothelial dysfunction in female, but not male, aorta, and 4) PKC-alpha and PKC-beta expression are significantly higher in female than male aorta. This study reveals the predisposition of female rabbit aorta to vascular injury under hyperglycemic conditions, possibly via activation of PKC-beta and O2- production. Furthermore, it suggests that, under hyperglycemic conditions, acute estrogen treatment is detrimental to endothelial function in female rabbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.