Abstract

Human studies indicate augmented myocardial lipid metabolism in females, and that sex and obesity interact to predict myocardial fatty acid oxidation and storage. Altered lipid dynamics precede cardiomyopathies, and many studies now address high fat diets. Conversely, caloric restriction (CR), is the most studied model for longevity and stress resistance, including protection against myocardial ischemia. However, no information exists on the effects of long-term caloric restriction (CR) on triacylglyceride (TAG) content and dynamics in the heart. This study explored the effects of CR, sex and age on TAG dynamics in mouse hearts. Male and female SVJ129 mice were fed either normal (ND) or CR diet for 3 or 10months. In 5-month-old mice, CR similarly decreased cardiac TAG in males (ND: 25.5±4.5nmol/mg protein; CR: 12.6±2.7, P<0.05) and females (ND: 30.1±4.4; CR: 13.7±1.2) (no significant differences in TAG content were seen between sexes). CR reduced the contribution of exogenous palmitate to oxidative metabolism in males and females, by 15% and 11% respectively, versus ND, without affecting cardiac workload. CR also induced a larger reduction in TAG turnover in male (68%) than female hearts (38%). Interestingly, in 5month old male mice, CR reproduced the lower TAG turnover rates of middle-aged males (ND 13-month-old male=423±76nmol/mgprotein/min). Thus, long term CR reduces TAG pool dynamics. Despite reduced content, hearts of female mice subjected to CR retained a more dynamic TAG pool than males, while males respond with greater metabolic remodeling of cardiac lipid dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.