Abstract

Recombination has essential functions in meiosis, evolution, and breeding. The frequency and distribution of crossovers dictate the generation of new allele combinations and can vary across species and between sexes. Here, we examine recombination landscapes across the 18 chromosomes of cassava (Manihot esculenta Crantz) with respect to male and female meioses and known introgressions from the wild relative Manihot glaziovii. We used SHAPEIT2 and duoHMM to infer crossovers from genotyping-by-sequencing data and a validated multigenerational pedigree from the International Institute of Tropical Agriculture cassava breeding germplasm consisting of 7020 informative meioses. We then constructed new genetic maps and compared them to an existing map previously constructed by the International Cassava Genetic Map Consortium. We observed higher recombination rates in females compared to males, and lower recombination rates in M. glaziovii introgression segments on chromosomes 1 and 4, with suppressed recombination along the entire length of the chromosome in the case of the chromosome 4 introgression. Finally, we discuss hypothesized mechanisms underlying our observations of heterochiasmy and crossover suppression and discuss the broader implications for plant breeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call