Abstract

Clinical studies have come to conflicting conclusions regarding BMP2 deficiency's link to regulating bone mass and increasing fracture risk. This may be due to the signaling protein having sex- or age-dependent effects. Previous pre-clinical studies have supported a role, but have not adequately determined the physical mechanism causing altered bulk material properties. This study investigated the physical effects of Bmp2 ablation from osteogenic lineage cells (Osx-Cre; Bmp2fl/fl) in 10- and 15-week-old male and female mice. Bones collected post-mortem were subjected to fracture toughness testing, reference point indentation testing, microCT, and histological analysis to determine the multi-scale relationships between mechanical/material behavior and collagen production, collagen organization, and bone architecture. BMP2-deficient bones were smaller, more brittle, and contained more lacunae-scale voids and cortical pores. The cellular density was significantly increased and there were material-level differences measured by reference point indentation, independently of collagen fiber alignment or organization. The disparities in bone size and in bone fracture toughness between genotypes were especially striking in males at 15-weeks-old. Together, this study suggests that there are sex- and age-dependent effects of BMP2 deficiency. The results from both sexes also warrant further investigation into BMP2 deficiency's role in osteoblasts' transition to osteocytes and overall bone porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call