Abstract
Obligately parthenogenetic lizards usually are all-female populations of hybrids producing diploid oocytes by premeiotic endomitosis and quasi-normal meiosis. In an all-female strain of the gekkonid lizard Lepidodactylus lugubris several phenotypic males arose spontaneously. The sexual characteristics of these males were studied using light and electron microscopy and compared with normal males of the bisexual genus Lygodactylus. Emphasis was layed on morphology of seminiferous tubules, occurrence of spermatogenic stages and ultrastructure of spermatozoa. The phenotypic males possessed preanal pores filled with secretions and a sexual nephric segment which were exactly the same as in normal, reproductively active males. In the testes, density and morphology of non-spermatogenic cell types, the Leydig and Sertoli cells, indicate a normal production of testicular testosterone and a normal function of the blood–testis barrier, respectively. Both in the normal and the phenotypic males, all meiotic cell types of spermatogenesis can be recognised in the seminiferous tubules and are apparently identical, indicating a normal meiosis without impairment in the phenotypic males. In contrast, the differentiation process of spermatids is markedly disturbed in the phenotypic males of L. lugubris. In the normal male, spermiogenesis results in mature spermatids and spermatozoa with small elongated nuclei, an acrosomal complex, and a flagellar tail possessing one axoneme. Spermatozoa fill both the lumen of most seminiferous tubules and the lumina of ductus epididymidis and ductus deferens. In the phenotypic male, spermiogenesis results in seemingly normal spermatids and in spermatozoa with large, non-elongated, deformed nuclei and/or irregular tails possessing more than one axoneme. Both the lumen of most seminiferous tubules and the lumina of the ductus epididymidis and the ductus deferens contain relatively few spermatozoa. We suggest that the phenotypic males inherited the ability for a premeiotic endomitosis from their all-female ancestral lineage. While in females this leads to quasi-normal meiosis and diploid oocytes capable of development, the small nuclei of the spermatozoa are unable to contain a diploid set of chromosomes. Because of the high amount of deformed spermatozoa and possibly uncontrolled loss of genetic material in structurally normal, but aneuploid spermatozoa we conclude that these otherwise perfect males are infertile, thus constituting another example of gametic sterility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.