Abstract

In most woody plants, leaf morphological and physiological characteristics are extremely variable across environmental gradients, particularly across altitudinal gradients. Hippophae rhamnoides L., a dioecious and deciduous shrub species, occupies a wide range of habitats in the Wolong Nature Reserve, southwest China. We measured growth, sex ratio and morphological and physiological characteristics of leaves in male and female H. rhamnoides individuals along an altitudinal gradient. Shoot height (HT), leaf N concentration per unit dry mass (N(mass)), leaf N concentration per unit area (N(area)) and leaf carbon isotope composition (delta(13)C) were higher in males than in females, whereas females had higher specific leaf area (SLA), stomatal length (SL) and stomatal index (SI) (i.e., total stomatal length per unit leaf area) than males along the altitudinal gradient. Females also had higher values of stomatal density (SD) at all altitudes except 2800 m. The male:female ratio (MFR) was biased toward males at all altitudes except at 2800 m. Changes in HT, MFR, SLA, SD, SL, SI, N(mass), N(area) and delta(13)C along the altitudinal gradient were nonlinear. Below 2800 m, HT, SLA, SD, SL and SI increased with increasing altitude, but above 2800 m they decreased with increasing altitude. In contrast, MFR, N(mass), N(area) and delta(13)C showed the opposite patterns with altitude. Consequently, we confirmed our hypotheses: (1) stressful environments have a more negative impact on females than on males in a variety of ways; (2) under optimal growth conditions the sex ratio is even, but becomes male-biased as resources become limited; and (3) there is an optimum altitudinal range at around 2800 m for the growth of H. rhamnoides in the Wolong Nature Reserve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call