Abstract
Acknowledging the importance of focusing on media’s communication for studying linguistic sexism, we propose a new method to analyze a corpus of texts via a machine learning approach built around an original training-set. We seek to establish a framework of the current use of talking about women in newspapers that expands beyond merely the objective forms of discrimination by also measuring the degree to which it implicitly conveys sexist messages through combination of words, expressions, and lexical aspects of language. As an illustrative example, we then apply such an approach to around 15,000 Italian newspapers’ headlines to investigate the impact of newspapers’ political orientations on the linguistic choices made by journalists in writing articles’ headlines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.