Abstract

AbstractRising temperatures and decreasing water transparency of lakes have strong wide ranging effects on fish. Fish responses to various changes in the environment are usually species‐dependent, but responses may also vary within species. In general, large individuals are considered to be more sensitive to environmental variation due to higher energy demand, than smaller individuals. Similarly, large individuals require more food to maintain bodily functions and are thus more sensitive to resource and food scarcity. These size‐specific responses to environmental gradients are also sex‐dependent in species that exhibit sexual size dimorphism (SSD). We studied in enclosures with short‐term experiments how rising temperatures and decreasing water transparency regulate the feeding rates of female and male European perch (Perca fluviatilis L.). To explore experimental results, we calculated perch SSD in nine lakes with varying environmental conditions using previously collected field data. The results of the experiments revealed that the combined effect of water transparency and temperature on the feeding rate of fish is gender‐dependent: feeding rate of females decreased more than that of males. The experimental results were also supported by field data that revealed a negative relation between water transparency and the magnitude of SSD in perch. Our results suggest that rising temperatures and decreasing water transparency may potentially decrease fish size in a sex‐dependent manner. As female size is one of the main demographic traits determining the reproductive success of a fish population, changing environments may have unexpected and far‐reaching consequences on fish population dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call