Abstract
Objective Periodontitis is an inflammatory disease of microbial etiology caused primarily by dysbiosis of the oral microbiota. Our aim was to compare variations in the composition of the oral microbiomes of youths with severe periodontitis according to gender. Methods Subgingival plaque samples collected from 17 patients with severe periodontitis (11 males and 6 females) were split for 16S rRNA gene sequencing. The composition, α-diversity, and β-diversity of the patients' oral microbiomes were compared between the males and the females. Linear discriminant analysis effect size (LEfSe) was used to analyze the specific taxa enriched in the two groups. Functional profiles (KEGG pathways) were obtained using PICRUSt based on 16S rRNA gene sequencing data. Results The Chao1 index and phylogenetic diversity whole tree were significantly higher in males than in females. The Simpson and Shannon indices were not significantly different between the two groups. β-Diversity suggested that the samples were reasonably divided into groups. The Kruskal-Wallis test based on the relative abundance of species, combined with the LEfSe analysis showed that the dominant bacteria in males were Pseudomonas and Papillibacter, whereas the dominant bacteria in women were Fusobacteriales and Tannerella. KEGG analysis predicted that the variation in the oral microbiome may be related to the immune system in women, whereas immune system diseases were the dominant pathway in men. Conclusion We found sex-specific differences in the oral microbiome in a sample of youths with severe periodontitis. The differences may be related to changes in immune homeostasis and lead to a better understanding of periodontitis.
Highlights
Disturbances in the oral microbiota can cause an immune response by the host that affects the protection and support of the periodontium, resulting in the development of periodontal disease [1]
We identified sex-specific differences in the oral microbiomes of youths with severe periodontitis through 16S rRNA gene sequencing and predicted the variation of the oral microbiomes that may be related to immunity in order to gain further understanding of periodontitis
The Kruskal-Wallis test based on the relative abundance of species composition, combined with linear discriminant analysis effect size (LEfSe) analysis showed that the dominant bacteria in males were Pseudomonas and Papillibacter, whereas the dominant bacteria in women were the order Fusobacteriales and the genus Tannerella
Summary
Disturbances in the oral microbiota can cause an immune response by the host that affects the protection and support of the periodontium, resulting in the development of periodontal disease [1]. Periodontitis is a highly prevalent oral disease among adults, with a prevalence of up to 50% in developed countries [2]. The prevalence is even greater (~90%) in developing countries [3]. The global burden of periodontitis is increasing with life expectancy and due to a worldwide decrease in tooth loss. In the 4th National Oral Health Survey in mainland China, the frequency of adults with periodontitis was 52.8% and with severe periodontitis (stage III or IV) 10.6% [4]. Understanding the composition and structure of oral microbiomes could improve periodontitis prevention, making it important for public health
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.