Abstract

The widespread use of sex toys has sparked concerns about potential health risks associated with the leaching of micro/nanoplastics (M/NPs) and phthalates. In this in silico toxicity analysis, we investigated the immunotoxicity potential of compounds mechanically produced from sex toys. The research focuses on understanding their interactions with critical human cytochrome P450 enzymes (CYP34A and CYP2D6), which are central to drug metabolism and immune function. Four types of M/NPs (polyethylene terephthalate - PET, polyvinyl chloride - PVC, polydimethylsiloxane - PDMS, polyisoprene) and eight phthalates (Diethyl phthalate - DEP, Bis(4-methyl-2-pentyl) phthalate, Bis(2-methoxyethyl) phthalate, Benzyl butyl phthalate - BBP, Dibutyl Phthalate - DBP, Diethylhexyl phthalate - DEHP, Dinonyl phthalate - DNP, Di-n-octyl phthalate - DnOP) from sex toys were analyzed. Molecular dynamics and docking simulations were conducted to assess the binding affinity of these compounds to the enzymes. PET exhibited the highest toxicity, with a binding affinity of -8.3 kcal/mol and -8.9 kcal/mol for CYP3A4 and CYP2D6, respectively, surpassing control values (-7.8 kcal/mol and -6.3 kcal/mol). BBP showed considerable toxicity, binding strongly to CYP3A4 (-7.8 kcal/mol) and CYP2D6 (-9.1 kcal/mol). PDMS and DEP were the lowest toxic compounds in both groups. Molecular interactions revealed hydrogen bonds, pi interactions, and unfavorable donor-donor effects between compounds and specific amino acid residues within the enzymes. While these in silico findings provide insights, they underscore the need for comprehensive chemical analyses and absorption studies to validate health risks. This research emphasizes the necessity of evaluating the toxicity of M/NPs and phthalates from sex toys, promoting further investigations to protect individuals' health during product use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call