Abstract

IntroductionSex steroids, insulin-like growth factors (IGFs) and prolactin are breast cancer risk factors but whether their effects are mediated through mammographic density, one of the strongest risk factors for breast cancer, is unknown. If such a hormonal basis of mammographic density exists, hormones may underlie ethnic differences in both mammographic density and breast cancer incidence rates.MethodsIn a cross-sectional study of 270 postmenopausal Caucasian and Afro-Caribbean women attending a population-based breast screening service in London, UK, we investigated whether plasma biomarkers (oestradiol, oestrone, sex hormone binding globulin (SHBG), testosterone, prolactin, leptin, IGF-I, IGF-II and IGF binding protein 3 (IGFBP3)) were related to and explained ethnic differences in mammographic percent density, dense area and nondense area, measured in Cumulus using the threshold method.ResultsMean levels of oestrogens, leptin and IGF-I:IGFBP3 were higher whereas SHBG and IGF-II:IGFBP3 were lower in Afro-Caribbean women compared with Caucasian women after adjustment for higher mean body mass index (BMI) in the former group (by 3.2 kg/m2 (95% confidence interval (CI): 1.8, 4.5)). Age-adjusted percent density was lower in Afro-Caribbean compared with Caucasian women by 5.4% (absolute difference), but was attenuated to 2.5% (95% CI: -0.2, 5.1) upon BMI adjustment. Despite ethnic differences in biomarkers and in percent density, strong ethnic-age-adjusted inverse associations of oestradiol, leptin and testosterone with percent density were completely attenuated upon adjustment for BMI. There were no associations of IGF-I, IGF-II or IGFBP3 with percent density or dense area. We found weak evidence that a twofold increase in prolactin and oestrone levels were associated, respectively, with an increase (by 1.7% (95% CI: -0.3, 3.7)) and a decrease (by 2.0% (95% CI: 0, 4.1)) in density after adjustment for BMI.ConclusionsThese findings suggest that sex hormone and IGF levels are not associated with BMI-adjusted percent mammographic density in cross-sectional analyses of postmenopausal women and thus do not explain ethnic differences in density. Mammographic density may still, however, be influenced by much higher premenopausal hormone levels.

Highlights

  • Sex steroids, insulin-like growth factors (IGFs) and prolactin are breast cancer risk factors but whether their effects are mediated through mammographic density, one of the strongest risk factors for breast cancer, is unknown

  • These findings suggest that sex hormone and IGF levels are not associated with body mass index (BMI)-adjusted percent mammographic density in cross-sectional analyses of postmenopausal women and do not explain ethnic differences in density

  • Two observations support a hormonal basis for mammographic density: density increases upon use of oestrogen and progestin hormonal therapies; and density is reduced by tamoxifen, a selective oestrogen receptor modulator [7,8]

Read more

Summary

Introduction

Insulin-like growth factors (IGFs) and prolactin are breast cancer risk factors but whether their effects are mediated through mammographic density, one of the strongest risk factors for breast cancer, is unknown. Mammographic density, the percentage of a mammogram that appears as radio-dense fibroglandular tissue, is one of the strongest markers of subsequent breast cancer risk [1]. This density may reflect an underlying process occurring within the breast that is causally related to breast cancer. Leptin may have a role in breast cancer development, especially in postmenopausal women where body mass index (BMI) is a breast cancer risk factor [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call