Abstract
Drospirenone (DRO) is a synthetic progestin derived from 17α-spironolactone with a pharmacological mechanism of action similar to progesterone. Despite its wide use as pharmaceutical and consequent continuous release into the aquatic environment, DRO effects have been poorly investigated on aquatic biota. In order to unravel the toxicity mechanisms of DRO, mussels Mytilus galloprovincialis were exposed for 7 days to different concentrations of DRO, namely 20ng/L (Low; L), 200ng/L (Medium; M), 2000ng/L (High; H) and 10μg/L (Super High; SH) nominal doses. Following exposure, no significant effect was observed on gonad maturation of treated and untreated mussels. The levels of progesterone (P4) and testosterone (T) were measured in mantle/gonad tissues and no significant alteration detected after exposure. However, the application of a protonic nuclear magnetic resonance (1H NMR)-based metabolomics approach enabled a comprehensive assessment of DRO effects in mussels. Specifically, 1H NMR metabolic fingerprints of digestive glands of DRO treated mussel groups were clearly separated from each other and from controls through a principal component analysis (PCA). Moreover, a number of metabolites involved in different metabolic pathways were found to significantly change in DRO-exposed mussels compared to control, suggesting the occurrence of alterations in energy metabolism, amino acids metabolism, and glycerophospholipid metabolism. Overall, despite no changes in gonad maturation and steroids levels were recorded in mussels after DRO exposure, the metabolomics approach demonstrated its effectiveness and high sensitivity in elucidating DRO-induced metabolic disturbances in marine mussels, and thus its usefulness in the environmental risk assessment of pharmaceuticals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.