Abstract

GABA, the major inhibitory neurotransmitter of the vertebrate brain, has been shown to play an important role in vertebrate reproduction by regulating LH release and sexual behavior. We have studied the expression of the GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), in goldfish throughout the reproductive cycle in May (mature), November (early gonadal recrudescence) and February (late gonadal recrudescence) and in response to implanted sex steroids. Levels of GAD 67 and GAD 65 mRNA levels in the hypothalamus of both males and females were highest in the early stages of gonadal recrudescence. In the telencephalon, a different seasonal pattern of GAD expression was evident. The telencephalic expression GAD 67, GAD 65 and a novel isoform, GAD3, were highest in sexually mature fish in May. Five-day intraperitoneal implantation of gonad-intact fish with testosterone (T), estradiol (E2) or progesterone (P4) did not affect GAD expression in November and February. This is in contrast to results in May when sex differences in steroid responsiveness were evident. Progesterone decreased hypothalamic GAD 67 and GAD 65 in females and was without effect in males. All other treatments did not alter GAD 67, GAD 65 or GAD3 expression in the hypothalamus. Both T and P4 decreased GAD 67 and GAD 65 levels in the telencephalon of male goldfish but had no effect in females. Serum sex steroid levels in control and implanted mature males and females in May were similar so it is unlikely that sex differences in the GAD responses were a result of differences in serum sex steroid levels. These contrasting effects of sex steroids on males and females suggest important sex differences in the regulation of the GADs in sexually mature goldfish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call