Abstract
The meiotic entry of undifferentiated germ cells is sexually specific and strictly regulated by the testicular or ovarian environment. Germline stem cells with a set of abnormal sex chromosomes and associated autosomes undergo defective meiotic processes and are eventually eliminated by yet to be defined post-transcriptional modifications. Herein, we report the role of gsdf, a member of BMP/TGFβ family uniquely found in teleost, in the regulation of meiotic entry in medaka (Oryzias latipes) via analyses of gametogenesis in gsdf-deficient XX and XY gonads in comparison with their wild-type siblings. Several differentially expressed genes, including the FKB506-binding protein 7 (fkbp7), were significantly upregulated in pubertal gsdf-deficient gonads. The increase in alternative pre-mRNA isoforms of meiotic synaptonemal complex gene sycp3 was visualized using Integrative Genomics Viewer and confirmed by real-time qPCR. Nevertheless, immunofluorescence analysis showed that Sycp3 protein products reduced significantly in gsdf-deficient XY oocytes. Transmission electron microscope observations showed that normal synchronous cysts were replaced by asynchronous cysts in gsdf-deficient testis. Breeding experiments showed that the sex ratio deviation of gsdf-/- XY gametes in a non-Mendelian manner might be due to the non-segregation of XY chromosomes. Taken together, our results suggest that gsdf plays a role in the proper execution of cytoplasmic and nuclear events through receptor Smad phosphorylation and Sycp3 dephosphorylation to coordinate medaka gametogenesis, including sex-specific mitotic divisions and meiotic recombination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.