Abstract

BackgroundRegulatory function of small non-coding RNAs (sRNA) in response to environmental and developmental cues has been established. Additionally, sRNA, also plays an important role in maintaining the heterochromatin and centromere structures of the chromosome. Papaya, a trioecious species with recently evolved sex chromosomes, has emerged as an excellent model system to study sex determination and sex chromosome evolution in plants. However, role of small RNA in papaya sex determination is yet to be explored.ResultsWe analyzed the high throughput sRNAs reads in the Illumina libraries prepared from male, female, and hermaphrodite flowers of papaya. Using the sRNA reads, we identified 29 miRNAs that were not previously reported from papaya. Including this and two previous studies, a total of 90 miRNAs has been identified in papaya. We analyzed the expression of these miRNAs in each sex types. A total of 65 miRNAs, including 31 conserved and 34 novel mirNA, were detected in at least one library. Fourteen of the 65 miRNAs were differentially expressed among different sex types. Most of the miRNA expressed higher in male flowers were related to the auxin signaling pathways, whereas the miRNAs expressed higher in female flowers were the potential regulators of the apical meristem identity genes. Aligning the sRNA reads identified the sRNA hotspots adjacent to the gaps of the X and Y chromosomes. The X and Y chromosomes sRNA hotspots has a 7.8 and 4.4 folds higher expression of sRNA, respectively, relative to the chromosome wide average. Approximately 75% of the reads aligned to the X chromosome hotspot was identical to that of the Y chromosome hotspot.ConclusionBy analyzing the large-scale sRNA sequences from three sex types, we identified the sRNA hotspots flanking the gaps of papaya X, Y, and Yh chromosome. The sRNAs expression patterns in these regions were reminiscent of the pericentromeric region indicating that the only remaining gap in each of these chromosomes is likely the centromere. We also identified 14 differentially expressed miRNAs in male, female and hermaphrodite flowers of papaya. Our results provide valuable information toward understanding the papaya sex determination.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-20) contains supplementary material, which is available to authorized users.

Highlights

  • Regulatory function of small non-coding RNAs in response to environmental and developmental cues has been established

  • The identified pericentromeric regions of the sex chromosomes are located adjacent to the unfilled gap on the physical map, indicating that the centromere of these chromosomes lies in the gap

  • Relative position of the pericentromeric region on X and Y chromosomes revealed that the centromere of X and Y chromosomes are located 1.6 Mb apart from each other, indicating that the inversion on Y chromosome occurred at the pericentromeric region spanning the centromere

Read more

Summary

Introduction

Regulatory function of small non-coding RNAs (sRNA) in response to environmental and developmental cues has been established. Micro RNA (miRNA) and small interfering RNA (siRNA) are two major classes of endogenous regulatory RNAs (sRNA) found in higher plants. These sRNAs are processed from RNA duplexes by a dicer family protein, which produces approximately 21-24nt final products. Many miRNAs regulate various developmental processes by sequence directed silencing of the mRNA at a posttranscriptional level [1,2,3,4,5]. Micro-RNAs and other sRNAs are important regulators of flower development and floral organ identity in many plant species [13,16,17,18,19,20,21]. Further analysis of sRNA transcriptome in various organs, tissues, and developmental phases will provide a better understanding on their function in plant development and organogenesis

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.