Abstract

Background/ObjectiveFemale mice are often excluded from diet-induced obesity studies as they are more resistant to the obesifying effects of a high-fat diet (HFD). However, the underlying mechanisms behind this sex disparity may actually have important implications for the development and management of obesity in humans. Therefore, we systematically investigated the immediate sex-specific effects of transitioning to a HFD in C57BL/6J mice as well as monitored whether these effects are altered after sustained HFD feeding and whether sex affects the response to a return to chow, representative of dieting.MethodsDual X-ray absorptiometry (DXA) analysis of body composition, indirect calorimetry measurements, and qPCR analysis of hypothalamic and brainstem regions were performed on male and female C57BL/6J mice.ResultsHFD had immediate and dramatic effects in males, increasing fat mass by 58% in the first 3 days. The resistance to the obesifying effect of HFD in females was linked both to an ability to maintain activity levels as well as to an immediate and significantly enhanced reduction in respiratory quotient (RQ), suggesting a greater ability to utilise fat in the diet as a source of fuel. Mechanistically, this sex disparity may be at least partially due to inherent sex differences in the catabolic (POMC/CART) versus anabolic (NPY/AgRP) neurological signalling pathways. Interestingly, the reintroduction of chow following HFD had immediate and consistent responses between the sexes with body composition and most metabolic parameters normalised within 3 days. However, both sexes displayed elevated hypothalamic Npy levels reminiscent of starvation. The difference in RQ seen between the sexes on HFD was immediately abolished suggesting similar abilities to burn fat reserves for fuel.ConclusionsC57BL/6J mice have markedly different sex-specific behavioural and metabolic responses to the introduction as well as the sustained intake of a HFD, but consistent responses to a dieting situation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.