Abstract

Cocaine is a psychostimulant in the pharmacological class of drugs called Local Anesthetics. Interestingly, cocaine is the only drug in this class that has a chemical formula comprised of a tropane ring and is, moreover, addictive. The correlation between tropane and addiction is well-studied. Another well-studied correlation is that between psychosis induced by cocaine and that psychosis endogenously present in the schizophrenic patient. Indeed, both of these psychoses exhibit much the same behavioral as well as neurochemical properties across species. Therefore, in order to study the link between schizophrenia and cocaine addiction, we used a behavioral paradigm called Acoustic Startle. We used this acoustic startle paradigm in female versus male Sprague-Dawley animals to discriminate possible sex differences in responses to startle. The startle method operates through auditory pathways in brain via a network of sensorimotor gating processes within auditory cortex, cochlear nuclei, inferior and superior colliculi, pontine reticular nuclei, in addition to mesocorticolimbic brain reward and nigrostriatal motor circuitries. This paper is the first to report sex differences to acoustic stimuli in Sprague-Dawley animals (Rattus norvegicus) although such gender responses to acoustic startle have been reported in humans (Swerdlow et al. 1997 [1]). The startle method monitors pre-pulse inhibition (PPI) as a measure of the loss of sensorimotor gating in the brain's neuronal auditory network; auditory deficiencies can lead to sensory overload and subsequently cognitive dysfunction. Cocaine addicts and schizophrenic patients as well as cocaine treated animals are reported to exhibit symptoms of defective PPI (Geyer et al., 2001 [2]). Key findings are: (a) Cocaine significantly reduced PPI in both sexes. (b) Females were significantly more sensitive than males; reduced PPI was greater in females than in males. (c) Physiological saline had no effect on startle in either sex. Thus, the data elucidate gender-specificity to the startle response in animals. Finally, preliminary studies show the effect of cocaine on acoustic startle in tandem with effects on estrous cycle. The data further suggest that hormones may play a role in these sex differences to acoustic startle reported herein.

Highlights

  • Cocaine is found in the leaves of the coca shrub; it is an ester of benzoic acid and methyl-ecgonine; ecgonine is an amino acid alcohol closely related to tropine, the amino alcohol of atropine

  • 20 mg/kg dose of cocaine showed a maximum effect in pre-pulse attenuation of acoustic startle

  • Further work is needed to delve into the neurochemical, hormonal and anatomical reasons for differences in the acoustic startle response in females and males. This is the first report of sex-specific differences in the acoustic startle paradigm in the presence of cocaine in Sprague-Dawley animals (Rattus norvegicus)

Read more

Summary

Introduction

Cocaine is found in the leaves of the coca shrub; it is an ester of benzoic acid and methyl-ecgonine; ecgonine is an amino acid alcohol closely related to tropine, the amino alcohol of atropine. Atropine is a muscarinic anticholinergic agent used to block nerve impulses to cocaine’s mechanism of action. To emphasize the role of cocaine as a local anesthetic, cocaine does have the same fundamental structure as the other classical synthetic local anesthetics given the caveat that its dramatic difference from the other local anesthetics lies in its “tropane” component (Figure 1). It is thought that tropane is the source of cocaine’s addictive properties.

Objectives
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.