Abstract

Many species exhibit biparental care to maximize fitness. When a partner is lost, the surviving partner may alter their behavior to compensate offspring. Whether both sexes use the same physiological mechanisms to manifest their change in behavior remains elusive. We investigated behaviors and mechanisms associated with the alteration of parental care post-partner removal in a biparental avian species, the rock dove (Columba livia). We hypothesized that rock dove single parents experience sex-biased changes in neural genomic transcription and reproductive behaviors, and these changes are related to chick development. We manipulated parental partner presence and measured parental attendance, offspring growth, gene expression of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in the pituitary, and GR, MR, and estrogen receptor beta (ER-β) in the hypothalamus. We also measured circulating plasma concentrations of the stress-associated hormone corticosterone and the parental care-associated hormone prolactin. We also quantified prolactin gene (PRL) expression changes in the pituitary, as well as prolactin receptor (PRLR) expression in the hypothalamus and pituitary. We found that single mothers and fathers maintained similar provisioning levels as paired parents, but spent less cumulative time brooding chicks. Chicks of single parents were smaller than paired-parented chicks after three days post-hatch. Mothers in both treatment groups experienced higher expression of hypothalamic GR as compared to fathers. Single parents experienced lower PRL gene expression in the pituitary as compared to paired parents. No significant differences were found for the circulating hormones or other genes listed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call