Abstract

Extensive studies have revealed the link between heavy metals and CKD. Compared to single meta-elements, mixture of metals reflect real-life metals exposure scenarios and are of interest. However, the mechanism of action of metal mixture on renal function is unclear. This study aimed to explore the potential relationship between urinary arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and chromium (Cr) contents with estimated glomerular filtration rate (eGFR) levels in 2775 participants. The levels of metals in urine were determined by inductively coupled plasma-mass spectrometry. We used linear regression models and the Bayesian kernel machine regression (BKMR) to evaluate the association between metals and eGFR levels. In linear regression analysis, urinary As (β = 2.723, 95%CI: 0.29, 5.157) and Pb (β = 3.081, 95%CI: 1.725, 4.438) were positively associated with eGFR in the total population. In the BKMR model, a mixture of the five metals had a positive joint effect on eGFR levels, while Pb (PIP = 0.996) contributed the most to eGFR levels. Pb was positively associated with eGFR levels in the total participants and women. As was positively correlated with eGFR levels in women. Pb and eGFR levels were positively correlated when the other metals were set at 25th, 50th, and 75th percentiles. To the best of our knowledge, all five metals mixed exposure was positively associated with eGFR. Pb showed more important effects than the other four metals in the mixture, especially in women.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.