Abstract

This study investigates the evolution of the sex ratio (parental investment in sons) when breeding adults are supported by help provided by nonbreeding individuals of one sex. The study also assumes that the helping sex remains on its natal site to compete for the opportunity to breed, whereas the nonhelping sex disperses. Two kin-selection models are presented, both of which incorporate the age structure found in many natural populations where such helping occurs. The first model assumes that helpers increase the survival of their parents. The second model assumes that helpers are indiscriminant: a helper chooses to increase the survival of a random pair of adults breeding on its natal patch. In both models, sex ratios are not always biased toward the sex that provides the most help. When helpers do not discriminate (second model), the direction of sex-ratio bias is determined solely by the size of the benefit of helping behavior. When this benefit is small, sex-ratio evolution is primarily influenced by local resource competition and sex ratios are biased toward the nonhelping (dispersive) sex. If the benefit of help is large enough, the effect of local resource competition is reduced and sex-ratio bias favors the helpful sex. When helpers help only their parents, the same qualitative relationship exists between the direction of sex-ratio bias and the benefit of helping. In this case, however, the direction of sex-ratio bias is also influenced by the size of the social group, mortality, and which individual (mother or father) controls the sex ratio. This study also investigates a sex-ratio conflict that exists between mates. Helping behavior of nonbreeders can act to alleviate the disparities between the optimal sex ratio from the perspective of a mother and that from the perspective of a father. This consequence of helping has not been previously recognized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call