Abstract

The sex pheromone of the azalea mealybug, Crisicoccus azaleae (Tinsley, 1898) (Hemiptera: Pseudococcidae), includes esters of a methyl-branched medium-chain fatty acid, ethyl and isopropyl (E)-7-methyl-4-nonenoate. These compounds are exceptional among mealybug pheromones, which are commonly monoterpenes. Determination of the absolute configuration is challenging, because both chromatographic and spectrometric separations of stereoisomers of fatty acids with a methyl group distant from the carboxyl group are difficult. To solve this problem, we synthesized the enantiomers via the Johnson-Claisen rearrangement to build (E)-4-alkenoic acid by using (R)- and (S)-3-methylpentanal as chiral blocks, which were readily available from the amino acids L-(+)-alloisoleucine and L-(+)-isoleucine, respectively. Each pure enantiomer, as well as the natural pheromone, was subsequently derivatized with a highly potent chiral labeling reagent used in the Ohrui-Akasaka method. Through NMR spectral comparisons of these derivatives, the absolute configuration of the natural pheromone was determined to be S. Field-trap bioassays showed that male mealybugs were attracted more to (S)-enantiomers and preferred the natural stereochemistry. Moreover, the synthetic pheromones attracted Anagyrus wasps, indicating that the azalea mealybug pheromone has kairomonal activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.