Abstract

Liver fibrosis is a common and reversible feature of liver damage associated with many chronic liver diseases, and its onset is influenced by sex. In this study, we investigated the mechanisms of liver fibrosis and regeneration, focusing on understanding the mechanistic gaps between females and males. We injected increasing doses of carbon tetrachloride into female and male mice and maintained them for a washout period of eight weeks to allow for liver regeneration. We found that male mice were more prone to developing severe liver fibrosis as a consequence of early chronic liver damage, supported by the recruitment of a large number of Ly6Chigh MoMφs and neutrophils. Although prolonged liver damage exacerbated the fibrosis in mice of both sexes, activated HSCs and Ly6Chigh MoMφs were more numerous and active in the livers of female mice than those of male mice. After eight weeks of washout, only fibrotic females reported no activated HSCs, and a phenotype switching of Ly6Chigh MoMφs to anti-fibrogenic Ly6Clow MoMφs. The early stages of liver fibrosis mostly affected males rather than females, while long-term chronic liver damage was not influenced by sex, at least for liver fibrosis. Liver repair and regeneration were more efficient in females than in males.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call