Abstract

BackgroundSex differences in experimental stroke outcomes are well documented, such that adult males have a greater infarct volume, increased stroke-induced mortality, and more severe sensory-motor impairment. Based on recent evidence that the gut is an early responder to stroke, the present study tested the hypothesis that sex differences in stroke severity will be accompanied by rapid and greater permeability of the gut-blood barrier and gut dysbiosis in males as compared to females.MethodMale and female Sprague-Dawley rats (5–7 months of age) were subject to endothelin (ET)-1-induced middle cerebral artery occlusion (MCAo). Sensory-motor tests were conducted pre- and 2 days after MCAo. Gut permeability was assessed in serum samples using biomarkers of gut permeability as well as functional assays using size-graded dextrans. Histological analysis of the gut was performed with H&E staining, periodic acid-Schiff for mucus, and immunohistochemistry for the tight junction protein, ZO-1. Fecal samples obtained pre- and post-stroke were analyzed for bacterial taxa and short-chain fatty acids (SCFAs).ResultsAfter stroke, males displayed greater mortality, worse sensory-motor deficit, and higher serum levels of proinflammatory cytokines IL-17A, MCP-1, and IL-5 as compared to females. MCAo-induced gut permeability was rapid and severe in males as indicated by dextran extravasation from the gut to the blood in the hyperacute (< 2 h) and early acute (2 days) phase of stroke. This was accompanied by dysmorphology of the gut villi and dysregulation of the tight junction protein ZO-1 in the acute phase. Fecal 16s sequencing showed no differences in bacterial diversity in the acute phase of stroke. Predictive modeling indicated that markers of gut permeability were associated with acute sensory-motor impairment and infarct volume.ConclusionsThese data show that extensive leakiness of the gut barrier is associated with severe post-stroke disability and suggest that reinforcing this barrier may improve stroke outcomes.

Highlights

  • Interrupted blood supply to the brain caused by ischemic stroke results in a loss of nutrients to the brain culminating in rapid cell death [1,2,3,4]

  • middle cerebral artery occlusion (MCAo)-induced gut permeability was rapid and severe in males as indicated by dextran extravasation from the gut to the blood in the hyperacute (< 2 h) and early acute (2 days) phase of stroke. This was accompanied by dysmorphology of the gut villi and dysregulation of the tight junction protein Zonnula occludins-1 (ZO-1) in the acute phase

  • Predictive modeling indicated that markers of gut permeability were associated with acute sensory-motor impairment and infarct volume

Read more

Summary

Introduction

Interrupted blood supply to the brain caused by ischemic stroke results in a loss of nutrients to the brain culminating in rapid cell death [1,2,3,4]. Disruption of the gut barrier can alter the composition of resident microbes and, gut metabolites, as well as activation of gut-resident immune cells and transfer of toxic gut metabolites into circulation. These metabolites can influence brain-specific activities related to stroke, such as blood-brain barrier integrity [24], microglial activity [25], and peripheral inflammation. Based on recent evidence that the gut is an early responder to stroke, the present study tested the hypothesis that sex differences in stroke severity will be accompanied by rapid and greater permeability of the gut-blood barrier and gut dysbiosis in males as compared to females

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call