Abstract

We examined the role of the androgen receptor (AR) in the investigatory behaviour of conspecifics using mice carrying the testicular feminisation mutation (X(Tfm) Y). Responses to members of the same and opposite sex were evaluated in a habituation/dishabituation task. Adult mice were gonadectomised and treated with oestradiol (E(2) ) or testosterone. After E(2) treatment, regardless of the sex of the stimulus mouse, wild-type (WT) males engaged in significantly more investigation than WT females. X(Tfm) Y males treated with E(2) showed 'male-like' behaviour in response to a male but behaved 'female-like' when the stimulus was a female. Because WT and X(Tfm) Y males behaved the same in response to another male, we used two additional mouse models to ask whether sex chromosomes were responsible for this phenomenon. Regardless of sex chromosome complement, gonadal males displayed high levels of investigation. When mice were treated with testosterone, investigation by WT females was enhanced, which eliminated the sex differences. Most strikingly, X(Tfm) Y males receiving testosterone-treatment increased the investigation of females to levels equal to those shown by WT mice. Given that testosterone, but not its metabolite E(2) , caused X(Tfm) Y males to investigate female conspecifics at high levels, it is plausible that nonclassical actions of AR, and/or activation of a novel AR, may be involved in this behaviour. Taken together, our data show that AR activation during adulthood is not required for males to investigate mice of either sex. However, 'male-like' levels of investigation of a female stimulus may depend on neonatal activation of the classic nuclear AR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.