Abstract

A variety of parrot species have recently gained attention as members of a small group of non-human animals that are capable of coordinating their movements in time with a rhythmic pulse. This capacity is highly developed in humans, who display unparalleled sensitivity to musical beats and appear to prefer rhythmically organized sounds in their music. Do parrots also exhibit a preference for rhythmic over arrhythmic sounds? Here, we presented humans and budgerigars (Melopsittacus undulatus) – a small parrot species that have been shown to be able to align movements with a beat – with rhythmic and arrhythmic sound patterns in an acoustic place preference paradigm. Both species were allowed to explore an environment for 5 min. We quantified how much time they spent in proximity to rhythmic vs. arrhythmic stimuli. The results show that humans spent more time with rhythmic stimuli, and also preferred rhythmic stimuli when directly asked in a post-test survey. Budgerigars did not show any such overall preferences. However, further examination of the budgerigar results showed an effect of sex, such that male budgerigars spent more time with arrthymic stimuli, and female budgerigars spent more time with rhythmic stimuli. Our results support the idea that rhythmic information is interesting to budgerigars. We suggest that future investigations into the temporal characteristics of naturalistic social behaviors in budgerigars, such as courtship vocalizations and head-bobbing displays, may help explain the sex difference we observed.

Highlights

  • We usually think about rhythm in the context of music, repetitive temporal patterns of acoustic events can be found throughout the animal kingdom, with familiar examples coming from the stridulations of insects, as well as the vocalizations of frogs, birds, and mammals (Wells, 1977; Haimoff, 1986; Geissmann, 2000; Greenfield, 2005; Mann et al, 2006; Hall, 2009)

  • The results show that humans prefer rhythmic over arrhythmic stimuli, they spend more time with rhythmic stimuli than arrhythmic stimuli in an acoustic place preference paradigm

  • When we studied budgerigars using highly similar methods, we found that there was no overall preference for rhythmic or arrhythmic stimuli

Read more

Summary

Introduction

We usually think about rhythm in the context of music, repetitive temporal patterns of acoustic events can be found throughout the animal kingdom, with familiar examples coming from the stridulations of insects, as well as the vocalizations of frogs, birds, and mammals (Wells, 1977; Haimoff, 1986; Geissmann, 2000; Greenfield, 2005; Mann et al, 2006; Hall, 2009). Some form of BPMC has been found in every musical tradition where it has been studied (Nettl, 2000), and infant electroencephalographic and looking-preference studies suggest that our sensitivity to the connection between music and movement develops very early in life (∼7 months; Phillips-Silver and Trainor, 2005). This evidence suggest that, for humans, there is something inherently rewarding about moving our bodies in time to music

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.