Abstract

We have previously reported that the mouse gut microbiome contributes to pulmonary responses to ozone, a common asthma trigger, and that short-chain fatty acids, end products of bacterial fermentation, likely contribute to this role of the microbiome. A growing body of evidence indicates that there are sex-related differences in gut microbiota and these differences can have important functional consequences. The purpose of this study was to determine whether there are sex-related differences in the impact of the gut microbiota on pulmonary responses to ozone. After acute exposure to ozone, male mice developed greater airway hyperresponsiveness than female mice. This difference was abolished after antibiotic ablation of the gut microbiome. Moreover, weanling female pups housed in cages conditioned by adult male mice developed greater ozone-induced airway hyperresponsiveness than weanling female pups raised in cages conditioned by adult females. Finally, ad libitum oral administration via drinking water of the short-chain fatty acid propionate resulted in augmented ozone-induced airway hyperresponsiveness in male, but not female, mice. Overall, these data are consistent with the hypothesis that the microbiome contributes to sex differences in ozone-induced airway hyperresponsiveness, likely as a result of sex differences in the response to short-chain fatty acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.