Abstract

Previous studies have shown that synaptic connections and organization of neuronal membranes are sexually dimorphic in the arcuate nucleus of developing and adult rats. These sex differences can be abolished by the perinatal androgenization of females. In this study the label-fracture method of Pinto da Silva and Kan was used in order to determine whether membrane sex differences are related to the glycoconjugates in neuronal plasma membranes. Six Sprague-Dawley female rats treated with testosterone on the day of birth, six control females injected with vehicle and six intact males were studied when they were 100 days old. The arcuate nucleus was dissected and incubated for 2 hours in a solution of 0.25 mg/ml concanavalin A, washed in buffer and incubated for 3 hours in a suspension of horseradish peroxidase-coated colloidal gold. Then, freeze-fracture replicas of the arcuate nucleus were prepared. Colloidal gold labeling was observed to be codistributed with intramembrane particles in the outer membrane face of the neuronal perikaryal plasma membrane. The numerical density of small (<10 nm) intramembrane particles and colloidal gold particles was significantly greater in control female membranes when compared to males or to androgenized females. The labeling was significantly reduced when the arcuate nucleus was incubated with concanavalin A in presence of 0.5 M methyl-α-manopyranoside. These findings indicate a sex difference in the density and distribution of glycoconjugates and intramembranous particles in the neuronal plasma membrane that is dependent on the perinatal levels of sex steroids and is concordant with, and could be the cause of, sex differences in the pattern of synaptic contacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call