Abstract
Most theoretical models for the evolution of temperature-dependent sex determination (TSD) rely upon differential fitness of male and female offspring incubated under different thermal regimes. However, there are few convincing data on this topic. We studied incubation effects in a lizard species (Bassiana duperreyi, Scincidae) with genotypic sex determination, so that we could separate effects due to incubation temperatures from those due to offspring gender. We incubated eggs under two different fluctuating-temperature regimes that simulated hot and cold natural nest-sites. The effects of our incubation treatments on phenotypes of the hatchling lizards (morphology and locomotor performance) differed between the sexes. Females emerging from eggs exposed to the "hot nest" treatment (diel cycling, 23-31°C) were larger, and ran faster, than did their sisters from the "cold nest" treatment (16-24°C). Males showed a smaller and less consistent phenotypic response than females. These incubation-induced responses were relatively stable during the first few weeks of life post-hatching, at least in captive lizards maintained under laboratory conditions. These kinds of sex differences in the phenotypic responses of hatchling reptiles to incubation conditions provide a plausible basis for the evolution of temperature-dependent sex determination in reptiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.