Abstract

BackgroundAngiotensin-(1-7) is a beneficial hormone of the renin-angiotensin system known to play a positive role in regulation of blood pressure and glucose homeostasis. Previous studies have shown that in high-fat diet (HFD)-induced obese male mice, circulating angiotensin-(1-7) levels are reduced and chronic restoration of this hormone reverses diet-induced insulin resistance; however, this has yet to be examined in female mice. We hypothesized angiotensin-(1-7) would improve insulin sensitivity and glucose tolerance in obese female mice, to a similar extent as previously observed in male mice.MethodsFive-week-old male and female C57BL/6J mice (8–12/group) were placed on control diet or HFD (16% or 59% kcal from fat, respectively) for 11 weeks. After 8 weeks of diet, mice were implanted with an osmotic pump for 3-week subcutaneous delivery of angiotensin-(1-7) (400 ng/kg/min) or saline vehicle. During the last week of treatment, body mass and composition were measured and intraperitoneal insulin and glucose tolerance tests were performed to assess insulin sensitivity and glucose tolerance, respectively. Mice were euthanized at the end of the study for blood and tissue collection.ResultsHFD increased body mass and adiposity in both sexes. Chronic angiotensin-(1-7) infusion significantly decreased body mass and adiposity and increased lean mass in obese mice of both sexes. While both sexes tended to develop mild hyperglycemia in response to HFD, female mice developed less marked hyperinsulinemia. There was no effect of angiotensin-(1-7) on fasting glucose or insulin levels among diet and sex groups. Male and female mice similarly developed insulin resistance and glucose intolerance in response to HFD feeding. Angiotensin-(1-7) improved insulin sensitivity in both sexes but corrected glucose intolerance only in obese female mice. There were no effects of sex or angiotensin-(1-7) treatment on any of the study outcomes in control diet-fed mice.ConclusionsThis study provides new evidence for sex differences in the impact of chronic angiotensin-(1-7) in obese mice, with females having greater changes in glucose tolerance with treatment. These findings improve understanding of sex differences in renin-angiotensin mechanisms in obesity and illustrate the potential for targeting angiotensin-(1-7) for treatment of this condition.

Highlights

  • Angiotensin-(1-7) is a beneficial hormone of the renin-angiotensin system known to play a positive role in regulation of blood pressure and glucose homeostasis

  • Obesity is a state of chronic energy imbalance that is often accompanied by metabolic derangements such as hyperinsulinemia, hyperglycemia, hyperleptinemia, hyperlipidemia, insulin resistance, and glucose intolerance [3]

  • While having higher adiposity at any given body mass index compared with men, premenopausal women are protected from obesity-related metabolic and cardiovascular complications as evidenced by lower blood pressure, less adipose tissue distributed to pro-inflammatory visceral depots, smaller and more insulin-sensitive adipocytes, and greater peripheral insulin sensitivity [4,5,6]

Read more

Summary

Introduction

Angiotensin-(1-7) is a beneficial hormone of the renin-angiotensin system known to play a positive role in regulation of blood pressure and glucose homeostasis. While having higher adiposity at any given body mass index compared with men, premenopausal women are protected from obesity-related metabolic and cardiovascular complications as evidenced by lower blood pressure, less adipose tissue distributed to pro-inflammatory visceral depots, smaller and more insulin-sensitive adipocytes, and greater peripheral insulin sensitivity [4,5,6]. These sex differences in obesity may be, in part, attributed to the renin-angiotensin system (RAS). Our laboratory recently showed that in high-fat diet (HFD)-induced obese male mice, chronic Ang-(1-7) treatment reverses wholebody insulin resistance by enhancing skeletal muscle glucose uptake [22]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call