Abstract

The aim of this study was to determine whether sex differences and effect of drop heights exist in stiffness alteration of the lower extremity during a landing task with a drop height increment. Twelve male participants and twelve female participants performed drop landings at two drop heights (DL40 and DL60; in cm). The leg and joint stiffnesses were calculated using a spring–mass model, and the joint angular kinematics were calculated using motion capture. Ground reaction forces (GRFs) were recorded using a force plate. The peak vertical GRF of the females was significantly increased when the drop height was raised from 40 to 60 cm. Significantly less leg and knee stiffness was observed for DL60 in females. The ankle, knee, and hip angular displacement during landing were significantly increased with drop height increment in both sexes. The knee and hip flexion angular velocities at contact were significantly greater for the 60 cm drop height relative to the 40 cm drop height in males. These sex disparities regarding the lower extremity stiffness and kinematics alterations during drop landing with a drop height increment would predispose females to lower extremity injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call