Abstract
The eukaryotic genome is assembled into distinct types of chromatin. Gene-rich euchromatin has active chromatin marks, while heterochromatin is gene-poor and enriched for silencing marks. In spite of this, genes native to heterochromatic regions are dependent on their normal environment for full expression. Expression of genes in autosomal heterochromatin is reduced in male flies mutated for the noncoding roX RNAs, but not in females. roX mutations also disrupt silencing of reporter genes in male, but not female, heterochromatin, revealing a sex difference in heterochromatin. We adopted a genetic approach to determine how this difference is regulated, and found no evidence that known X chromosome counting elements, or the sex determination pathway that these control, are involved. This suggested that the sex chromosome karyotype regulates autosomal heterochromatin by a different mechanism. To address this, candidate genes that regulate chromosome organization were examined. In XX flies mutation of Topoisomerase II (Top2), a gene involved in chromatin organization and homolog pairing, made heterochromatic silencing dependent on roX, and thus male-like. Interestingly, Top2 also binds to a large block of pericentromeric satellite repeats (359 bp repeats) that are unique to the X chromosome. Deletion of X heterochromatin also makes autosomal heterochromatin in XX flies dependent on roX and enhances the effect of Top2 mutations, suggesting a combinatorial action. We postulate that Top2 and X heterochromatin in Drosophila comprise a novel karyotype-sensing pathway that determines the sensitivity of autosomal heterochromatin to loss of roX RNA.
Highlights
30% of the Drosophila genome is heterochromatic [1]
These observations were surprising because the roX RNAs were not thought to play a role outside of X chromosome dosage compensation
Autosomal heterochromatin is typically not thought of as differing in males and females, but sexually dimorphic Position Effect Variegation (PEV) has been observed in mice, where a variegating transgene is more highly expressed in females [50]
Summary
30% of the Drosophila genome is heterochromatic [1]. Many cytological and molecular features distinguish gene-poor heterochromatin from gene-rich euchromatin. Heterochromatin is characterized by repetitive DNA sequences, low levels of histone acetylation, PLOS ONE | DOI:10.1371/journal.pone.0128114 June 8, 2015
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.